接下來將實作24量子位元的BB84協議
# import all necessary objects and methods for quantum circuits
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
import random
from random import randrange
#Initial source: awards/teach_me_qiskit_2018/cryptography/Cryptography.ipynb
#Code modified to introduce noise in communication channel
def NoisyChannel(qc1, qc2, qc1_name):
''' This function takes the output of a circuit qc1 (made up only of x and
h gates, simulate noisy quantum channel, where Pauli errors (X - bit flip; Z - phase flip
will occur in qc2 and then initializes another circuit qc2 with introduce noise.
'''
# Quantum state is retrieved from qasm code of qc1
qs = qc1.qasm().split(sep=';')[4:-1]
# Process the code to get the instructions
for index, instruction in enumerate(qs):
qs[index] = instruction.lstrip()
# Parse the instructions and apply to new circuit
for instruction in qs:
if instruction[0] == 'x':
if instruction[5] == '[':
old_qr = int(instruction[6:-1])
else:
old_qr = int(instruction[5:-1])
qc2.x(qreg[old_qr])
elif instruction[0] == 'h':
if instruction[5] == '[':
old_qr = int(instruction[6:-1])
else:
old_qr = int(instruction[5:-1])
qc2.h(qreg[old_qr])
elif instruction[0] == 'm': # exclude measuring:
pass
else:
raise Exception('Unable to parse instruction')
### Introducing noise
for instruction in qs:
if randrange(7)<1:
if instruction[5] == '[':
old_qr = int(instruction[6:-1])
else:
old_qr = int(instruction[5:-1])
qc2.x(qreg[old_qr]) #apply bit-flip error
if randrange(7)<1:
if instruction[5] == '[':
old_qr = int(instruction[6:-1])
else:
old_qr = int(instruction[5:-1])
qc2.z(qreg[old_qr]) #apply phase-flip error
def print_outcomes_in_reserve(counts): # takes a dictionary variable
for outcome in counts: # for each key-value in dictionary
reverse_outcome = ''
for i in outcome: # each string can be considered as a list of characters
reverse_outcome = i + reverse_outcome # each new symbol comes before the old symbol(s)
return reverse_outcome
建立一個包含 24 個量子位元的電路,Asja 將其發送給 Balvis。
qreg = QuantumRegister(24) # quantum register with 24 qubits
creg = ClassicalRegister(24) # classical register with 24 bits
send=[] #Initial bit string to send
asja_basis=[] #Register to save information about encoding basis
balvis_basis=[] #Register to save information about decoding basis
#Asja
asja = QuantumCircuit(qreg, creg, name='Asja')
for i in range(24):
bit = randrange(2)
send.append(bit)
for i, n in enumerate(send):
if n==1: asja.x(qreg[i]) # apply x-gate
for i in range(24):
r=randrange(2) #Asja randomly pick a basis
if r==0: #if bit is 0, then she encodes in Z basis
asja_basis.append('Z')
else: #if bit is 1, then she encodes in X basis
asja.h(qreg[i])
asja_basis.append('X')
balvis = QuantumCircuit(qreg, creg, name='Balvis') #Defining Balvis circuit
NoisyChannel(asja, balvis, 'Asja') #Asja sends noisy states to Balvis
#Balvis
for i in range(24):
r=randrange(2) #Balvis randomly pick a basis
if r==0: #if bit is 0, then measures in Z basis
balvis.measure(qreg[i],creg[i])
balvis_basis.append('Z')
else: #if bit is 1, then measures in X basis
balvis.h(qreg[i])
balvis.measure(qreg[i],creg[i])
balvis_basis.append('X')
job = execute(balvis,Aer.get_backend('qasm_simulator'),shots=1)
counts = job.result().get_counts(balvis)
counts = print_outcomes_in_reserve(counts)
received = list(map(int, counts))
#Sifting
asja_key=[] #Asjas register for matching rounds
balvis_key=[] #Balvis register for matching rounds
for j in range(0,len(asja_basis)): #Going through list of bases
if asja_basis[j] == balvis_basis[j]: #Comparing
asja_key.append(send[j])
balvis_key.append(received[j]) #Keeping key bit if bases matched
else:
pass #Discard round if bases mismatched
#QBER
rounds = len(asja_key)//3
errors=0
for i in range(rounds):
bit_index = randrange(len(asja_key))
tested_bit = asja_key[bit_index]
if asja_key[bit_index]!=balvis_key[bit_index]: #comparing tested rounds
errors=errors+1 #calculating errors
del asja_key[bit_index] #removing tested bits from key strings
del balvis_key[bit_index]
QBER=errors/rounds #calculating QBER
QBER=round(QBER,2) #saving the answer to two decimal places
print("QBER value =", QBER)
print("Asjas secret key =", asja_key)
print("Balvis secret key =", balvis_key)
輸出結果有可能如下:
QBER value = 0.0
Asjas secret key = [1, 1, 0, 1, 0, 0, 1, 0, 0, 0]
Balvis secret key = [0, 1, 0, 1, 0, 0, 1, 1, 0, 1]
假設threshold值設定為0.25
程式方面則是照著下面的邏輯
def split(list1, n):
out = []
last = 0.0
while last < len(list1):
out.append(list1[int(last):int(last + n)])
last += n
return out
def cascade_pass(lA, lB, n):
#input key lists A-Asja, B-Balvis and target block size to divide in blocks
#Shuffle
permutation = list(zip(lA, lB)) #map the index of multiple lists
random.shuffle(permutation) #performing permutation
shuffledLA, shuffledLB = zip(*permutation) #unpacking values
#Split
splitLA=split(shuffledLA, n)
splitLB=split(shuffledLB, n)
#計算奇偶校驗
#建立空列表,"correctA/B"將包含未發現錯誤的區塊
#“errorA/B”list包含奇偶校驗不匹配的區塊
correctA, correctB, errorA, errorB= [], [], [], []
sumBlocksA = [sum(block) for block in splitLA]
# calculating parity by first calculating sums of each block in splitA/B
sumBlocksB = [sum(block) for block in splitLB]
parityA = [i %2 for i in sumBlocksA]
#then applying mod(2) operator to our calculated sums and saving results
parityB = [i %2 for i in sumBlocksB] #in parity bit list
for i,value in enumerate(range(len(parityA))): #comparing parity bits from list1 with list2
if parityA[i]==parityB[i]:
#if parity bits matched - we add corresponding blocks to our list 'correct'
correctA.append(splitLA[i])
correctB.append(splitLB[i])
else:
errorA.append(splitLA[i])
#if parity bits mismatched - we add corresponding blocks to our list 'errors'
errorB.append(splitLB[i])
keyA = [item for i in correctA for item in i] #Converting our correct blocks into a list
keyB= [item for i in correctB for item in i]
return keyA, keyB, errorA, errorB
#returning key that consist of correct blocks (list) and blocks with errors (tuple)
#Before starting error correction, we check calculated QBER value
if QBER==0.0:
print("QBER is 0. Cascade Protocol skipped!")
print("Final Key Asja", asja_key)
print("Final Key Balvis", balvis_key)
if QBER>=0.25:
print("QBER value is", QBER,"\nThreshold value reached! Protocol Aborted!") #If QBER is above threshold value - we abort protocol
if 0<QBER<=0.25: #if 0<QBER<=0.25 we perform Cascade protocol
blockSize=0.73//QBER
kFinalA, kFinalB=[], [] #creating registers for final keys
#Cascade protocol 1st pass
corrBlockA, corrBlockB, errBlockA, errBlockB=cascade_pass(asja_key, balvis_key, blockSize) #cascade function
kFinalA.extend(corrBlockA) #adding block which parity bits matched to final key string
kFinalB.extend(corrBlockB)
#我們現在大概知道初始金鑰字串中有多少個錯誤,
#因為在第一次通過之後,errorA/B list中的每個區塊都包含 1 個(或其他奇數個)錯誤
#我們現在可以在修正這些錯誤之前確定最終(修正後的)金鑰清單長度(當每個區塊中還剩下 1 位元時)
#換句話說,我們的 Cascade 協定的倒數第二遍將有一個金鑰長度
penultimatePassLength=len(asja_key)-len(errBlockA)
while len(kFinalA)!=penultimatePassLength:
#Bisective search at each block until corrected key length is not equal length of initial key minus error blocks number after first pass
for i, (blockA, blockB) in enumerate(zip(errBlockA, errBlockB)):
if len(blockA)>1:
secondPassA=list(blockA)# we convert block into a lists
secondPassB=list(blockB)
blockSize2=len(blockA)//2
#we change block size, now we will divide each block that contains an error in halfs
corrBlockA2, corrBlockB2, errBlockA2, errBlockB2=cascade_pass(secondPassA, secondPassB, blockSize2) #and apply cascade
kFinalA.extend(corrBlockA2) #then we will add correct bits to key strings
kFinalB.extend(corrBlockB2)
errBlockA[i]=errBlockA2[0] #updating error block values
errBlockB[i]=errBlockB2[0]
if len(blockA)==1:
#Side case if one block in the round will be shorter than the oner thus will require less passes
for bit in blockA:
if bit==1:
bitA=errBlockA[0][0]
kFinalA.append(bitA)
#Asja adds corresponding bit to her key string without change
bitB=errBlockB[0][0]+1
#but Balvis will first correct the error by flipping the bit value
kFinalB.append(bitB)
if bit==0:
bitA=errBlockA[0][0]
kFinalA.append(bitA)
#Asja adds corresponding bit to her key string without change
bitB=errBlockB[0][0]-1
#but Balvis will first correct the error by flipping the bit value
kFinalB.append(bitB)
#print("---PERFORMING NEXT PASS---\n", "Final key Asja:", kFinalA, "\n", "Final key Balvis", kFinalB)
#print(" Blocks with errors Asja", errBlockA, "\n", "Blocks with errors Balvis", errBlockB)
#After previous passes we have a nested lists, to convert them:
errorA=[item for elem in errBlockA for item in elem]
errorB=[item for elem in errBlockB for item in elem]
#Error correction step, when our error blocks contains just 1 bit (error)
for i, error in enumerate(zip(errorA, errorB)):
# bitA=int(''.join(map(str, errorA))) #Converting tuple to integer
# bitB=int(''.join(map(str, errorB)))
bitA=int(errorA[i])
bitB=int(errorB[i])
if bitA==1:
kFinalA.append(bitA)
correctedBitB=bitB+1
kFinalB.append(correctedBitB)
if bitA==0:
kFinalA.append(bitA)
correctedBitB=bitB-1
kFinalB.append(correctedBitB)
print("Final Key Asja", kFinalA)
print("Final Key Balvis", kFinalB)
但回想一下奇偶校驗問題!
即使我們看到 QBER =0
或者我們實作了 Cascade 協定並修正了錯誤,這並不意味著我們可以 100% 確定我們的金鑰字串是相同的。一些偷偷摸摸的錯誤位仍然可能隱藏在那裡。
因此,在 QBER=0 的情況下以及實施 Cascade 協議後運行 BICONF 策略非常重要。我們需要確信我們的密鑰是相同的!
如果滿足以下條件,我們將運行 BICONF 策略:
from numpy import log as ln
if QBER!=0: #defining size of blocks
biconfBlockSize=(4*ln(2))//(3*QBER)
if QBER==0:
biconfBlockSize=8
kFinalA=asja_key
kFinalB=balvis_key
#print(QBER)
rounds = 0 #counting rounds
biconfError=[] #creating register for rounds with an error
error=0 #register for found and corrected error
while rounds!=8: #we will go through rounds and monitor if blocks with errors will be found
rounds=rounds+1
#Creating random subsets
kFinalZipped=list(zip(kFinalA, kFinalB)) #maping indexes of our two lists
randomBlock=random.sample(list(enumerate(kFinalZipped)), int(biconfBlockSize))
#at this point we will have nested tuple that contains (index of random bit, (bit from Asja string, bit from Balvis string))
#print(randomBitList) #will print out our nested tuple
#print(randomBitList[0]) # will print out one block (index, (bitA, bitB))
#print(randomBitList[0][0]) # will print only first pair index
#print(randomBitList[0][1][0]) #will print only first pair Asjas' bit
#We will now need to calculate and compare parity bits for both users bits
sumBlockA=0
sumBlockB=0
for i in range(0,int(biconfBlockSize)):
sumBlockA=sumBlockA+randomBlock[i][1][0]
sumBlockB=sumBlockB+randomBlock[i][1][1]
parityA = sumBlockA%2
#then aplying mod(2) operator to our calculated sums and saving results
parityB = sumBlockB%2
if parityA!=parityB:
#if parities of block dismatch - we bisective search to correct error before continue with next round
print("Error found in round:", rounds)
print("Applying bisective search and error correction")
#Applying bisective search to find and correct an error
while len(randomBlock)>1:
#We will take our block with error and run besective search till we find bit with error
#Split the block
if len(randomBlock)%2==1: #If block size is odd
half=len(randomBlock)//2+1
#Lenght of our first block should be half+1
else:
half=len(randomBlock)//2
splitBlock=split(randomBlock, half)
#spliting our block in two parts
for i, block in enumerate(splitBlock): #For each part
sumA=0
sumB=0
for j in range(0,len(block)): #calculating sums
sumA=sumA+splitBlock[i][j][1][0]
sumB=sumB+splitBlock[i][j][1][1]
parA=sumA%2 #then calculate parities
parB=sumB%2
if parA==parB:
pass
if parA!=parB:
#if parities dismatch- we update our block and run while loop again
randomBlock=splitBlock[i]
if len(randomBlock)==1: #once we isolate the error to 1 bit
error=error+1
print("Error found in bit:", randomBlock[0][0])
#we retrieving the index of bit pair
errorIndex=int(randomBlock[0][0])
#Apply error correction at Balvis' initial key string
if kFinalB[errorIndex]==0:
kFinalB[errorIndex]=1
else:
kFinalB[errorIndex]=0
print("Error corrected!\n")
else: #If parities matched
pass
print("BICONF strategy completed!\n", error, "errors found!")
print("Final key Asja", kFinalA)
print("Final key Balvis", kFinalB)
輸出結果也許會是這樣
Error found in round: 2
Applying bisective search and error correction
Error found in bit: 7
Error corrected!
Error found in round: 5
Applying bisective search and error correction
Error found in bit: 0
Error corrected!
Error found in round: 6
Applying bisective search and error correction
Error found in bit: 9
Error corrected!
BICONF strategy completed!
3 errors found!
Final key Asja [1, 1, 0, 1, 0, 0, 1, 0, 0, 0]
Final key Balvis [1, 1, 0, 1, 0, 0, 1, 0, 0, 0]
#Privacy amplification
import hashlib
#Generating seed (salt)
seed=[]
for i in kFinalA:
a=randrange(2)
seed.append(a)
#Adding seeds to the keys
kFinalA.append(seed)
kFinalB.append(seed)
#Converting lists to strings
strKFinalA = ' '.join([str(elem) for elem in kFinalA])
strKFinalB = ' '.join([str(elem) for elem in kFinalB])
#checking first bit to decide hash function to use
if kFinalA[0]==1:
resultA=hashlib.sha256(strKFinalA.encode())
print("Asjas' final key:", bin(int(resultA.hexdigest(), 16))[2:])
else:
resultA=hashlib.sha3_256(strKFinalA.encode())
print("Asjas' final key:", bin(int(resultA.hexdigest(), 16))[2:])
print()
if kFinalB[0]==1:
resultB=hashlib.sha256(strKFinalB.encode())
print("Balvis' final key:", bin(int(resultB.hexdigest(), 16))[2:])
else:
resultB=hashlib.sha3_256(strKFinalB.encode())
print("Balvis' final key:", bin(int(resultB.hexdigest(), 16))[2:])
輸出結果如下:
Asjas' final key: 1100000011001011100101111111011000101011110100011011100011100010111100001001010010000000101011010000100111111000001100111000100010010010111010101110011100110000011010010011010100100010111001000000111000011110011000000110010101001010000101110110111110110001
Balvis' final key: 1100000011001011100101111111011000101011110100011011100011100010111100001001010010000000101011010000100111111000001100111000100010010010111010101110011100110000011010010011010100100010111001000000111000011110011000000110010101001010000101110110111110110001
如此一來就完成完整的BB84協議,並確保了通訊過程加密的安全性!!
參考資料: womanium 教材